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LETTER TO THE EDITOR

Vanishing gaps in 10 bandstructures

A I Mogilner and P D Loly

Department of Physics and Winnipeg Institute for Theoretical Physics, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Received 31 March 1992

Abstract. The criterion for vanishing or zero-energy gaps in the spectrum of 10 elecironic
bandstructures is obtained from perturbation theory. lt is in agreement with examples
of periedic potentials which never exhibit zero-gaps as well as with those which may,
including certain smooth periodi¢ potentials. The results have relevance to recent work in
the field of semiconductor laycred heterosiructures or superlallices. The analysis should
also have implications for other problems 1hat involve Hill's determinant.

Rigorous results for electronic energy bands cxist mainly for 1D [1-3] where the gen-
eral results describe energy bands varying monotonically from minimum to maximum
energy from the centre of the Brillouin zone to the boundary of the first Brillouin
zone, or vice versa, with gaps separating successive bands, which are infinite in num-
ber. However, the occurrence of vanishing gaps, or zero-energy gaps (ZEG), revives
from time to time [4-8] and has remained an open question. While these do not
occur in some well known models, e.g. the Mathieu problem [9], the ‘Dirac comb’
limit {10] of the Krénig—Penney (Kr) model, nor apparently in the sawtooth (trian-
gular wave) potential [11], they do appear in studies of rectangular KP models and
a hybrid of triangular wells separated by (lat interstial regions {5], amongst others,
and so the question arises as to what are the nccessary characteristics of periodic
potentials for the appearance of vanishing (i.c. disappearance of) energy gaps. In
recent years some of these 1D models, cspecially various KP models [12], but also
sawtooth (triangular periodic) models for é§-doping {13], have been helpful in the top-
ical context of semiconductor heterostructurcs and other superlattices [8, 14] where
molecular beam epitaxy can be uscd to fabricate a good approximation to any desired
potential profile. Of course, one does not expect the criteria for vanishing gaps in 1D
to be met precisely, in the same sense that certain cxotic van Hove singularities are
not fully realized, but surely our results have relevance to anomalously small band
gaps. Our interest in these questions was stimulated by a systematic numerical study
[11] of simple periodic potentials and in this lctter we present our recent analytic
understanding of this question.

There are a whole set of rigorous theorems [3] which give very restrictive con-
ditions on the narrow classes of potentials having infinitely many ZEGs. It follows
that in some rigorous sense almost all periodic potentials possess open gaps, and the
existence of ZEGS is the exceptional case, necding some constraints on the model
parameters.
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Let us note that there may be connections with other quantum problems, ¢.g. the
search for gaps in photonic band structures [15], the anharmonic oscillator {16], as
well as many others that predate quantum mechanics and electronic energy bands,
since the mathematical problem of periodic perturbations goes back to Hill’s equation
in classical problems [17] where examples range (rom astronomical calculations to the
inverse pendulum.

We consider the 1D operator (~A + V) where V(z + 27n) = V(z), n is any
integer number, and 2~ is the lattice parameter. It is shown in [3] that the edges of
the gaps in the spectrum of this operator may be obtained in the following way.

Consider the operatars

H, = -d%/dz*+ V on L*([0,2x],dx) with periodic boundary conditions; and
H, = —d%/dz® + V on L¥({0,2x],da) with antiperiodic boundary conditions.

Let EY, Ef, .. be the eigenvalues of H, and E}, £3, ..., correspondingly, of H,,
and also let

{Eg n odd { E2  nodd
C!n =

. )
g 7 even Er n even.

Then U, (8, . «,] is the set of gaps.

We have derived the criterion {or the existence of ZEGs using the technigues of
Malyshev and Minlos [18] for the case of the even gaps which appear at the centre
of the Brillouin zone by restricting consideration to //,,. The procedure is similar for
the odd gaps, which appear at the first Brillouin boundary, using instead H_, and the
derivation is the same.

It is convenient to introduce the basis ¢, = (27)~ /2 exp(inz). Then if v solves
H,¥ = Ev¢ and a, = (¢,,, 1), we find

o<
("’2 - E)an + Z Vman-}-m =0 (2)
-0

where V,, = (¢,,,V). This infinite determinant (Hill’s) for the eigenvalues has
diagonal elements (n? — E) bordered by paraliels containing successively Vi, V,, ...
which are the Fourier coeflicients of the potential [19).

All even gaps vanish in the free-clectron limit, since for V' = 0 the cigenvalues
of H, are n?, n =0, £1, +2,.... These arc doubly degenerate, associated with
oppositely placed pairs of reciprocal lattice vectors (n), so that 8, = o, 4,0 =
1,2,..., and this gives the cssence of the 1D problem.

To consider the splitting of these doubly degenerate pairs for the 2nth gap,
n=1,2,..., we use perturbation theory [20]. Details of the extensive remapping of
the matrix will be given elsewhere {21]. If the cdges are given by

Ga=AxA 3)

where X is the mean eigenvalue of the pair and A determines the splitting, it can be
shown [21] that

A=nt 4 Z n'-’—?n?+0(n_2) @)
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n ™ n.+m V3 5
> o +O(F) ()

mEn,—n
where V = [[V]|,, =3, |V;|. Thus the only condition for the 2nth gap to vanish is
A=0 ©)

which thereby is our criterion for the existence ol ZEGS.

Our perturbation results are valid if the criterion for the smallness of the perturba-
tion ||V|| « w (where ||V|| is the norm of the potential energy operator, ||Vl <V,
w is the distance between the level considered and the set of all other points of
the unperturbed spectrum, i.e. the encrgy difference to the next closest free-electron
eigenvalues, such that w > n holds). So the results are true if the inequality

V&n (7)

holds, meaning that strictly this applies to high-lying gaps only: the energy of the gap
E, ~n? > n > V means that the energy of this gap is much higher than the top
of the potential. Nevertheless we will see that in all known examples our predictions
for the presence or absence of ZEGs are consisient with existing band gap knowledge.
For the odd gaps we find a splitting A’ for the (2n 4 1}th gap, n = 0,1,...

R ‘/n—m Vn+m+1 V3
M=Vt T ot s eo( ) ®

m#En, ~n—1

and the criterion for the (2n + 1)th gap, » = 0,1,2,... to vanish is A’ = 0, where
A’ is defined by (8) under the same restriction (7) on the potential.

Qur criterion in (6), taken with (5) and (8), may be interpreted initially as V, = 0,
which has some application, or as V, = 0 with corrections supplicd by the higher
order terms, or in full, as will be seen in our examples below,

Let us first discuss examples with no vanishing gaps. It should be clear from above
that our perturbation results concern high-lying gaps, and that some caution needs to
be exercised in applying the results to low-lying gaps. In fact a greater generality is
afforded by many of the results.

For the pure cosine potential (the Mathieu problem) [9] the high-lying gaps (for
which n > V, where V is the top of the potential) cannot vanish. Since there is
only one non-zero Fourier coefficicnt, V,, the lirst non-zero term in the perturbation
series for the nth gap is of order n

Vﬂ.

AF o~ -—--—(q 3

>0 ©)

so that high-lying ZEGs are absent in accordance with the exact result (3]

For the Dirac comb described by V(z) = Zn__ooAé(rz— 2mrn), A being the
strength of the &-function, the criterion n > V' is not applicable but we may use
perturbation theory formally if A € n to give

AE~A+0O(A*n)>0 (10)

in accordance with the exact result [t10]. Again no gaps vanish.
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Now let us consider the triangular periodic or sawtooth potential which has the
Fourier series

V(z)= YV, cos(nz) v, = %{(—1)” -1]. (11)

n=]

Clearly V,,, = 0 for any n and all non-zero terms have the same sign. An accurate
estimate of the second order terms gives

1 6402 2
&E ~ = —
(mgdd m2(2n — m)¥(n? - 1-,12)) oy ¢ w3 >0 (12)

where C' ~ 1, which means that high-lying even gaps are all open. For the odd gaps
one finds

. U3 e u?
AE_V._,HH+0(5)~ 3 +o(n3)>0. (13)
-~ Now we discuss examples which do exhibit vanishing gaps. Almost all reports of
ZEGs are concerned with K¢ models [4, 5, 7] which are piecewise flat, except for
Lin and Smit’s study [5] of triangular wells separated by flat sections. One develops
the impression that in some way flat sections are associated with this phenomenon.
This may be dispelled by considering the truncated 3 x 3 matrix from (2) for the
lowest three eigenvatues corresponding to reciprocal lattice vectors for n = 0,41
and finding its eigenvalues. This is a finitc model for the following smooth potential

V(z) = V] cos(ax) + V, cos(2x) Vi, Vo € 1. (14)

For small V|, V,, the degeneracy condition for the first even gap (the 2nth gap for
n = 1) occurs for

V, = — V7 4+ O(VP). (15)

For example, if V, = --0.25 we find that V| = 0.559017... from this approxi-
mation. A more precise value may be found numerically using larger determinants
with the method described earlier [19]. In any case this is exactly the perturbation
criterion of second order perturbation theory for the first even ZEG from (5) if we
omit other terms of higher order. We note that Strandberg [6] has also realized that
ZEGS can occur for smooth potentials in a discussion for decep wells using arguments
from inverse scattering theory. However he does not give a criterion comparable with
our (5), (6).

For the Kronig-Penney modecl a simpie ‘geometrical’ interpretation of some ZEGs
was given by Lin and Smit [5] as follows: take b [or the length of the plateau, ¢ for
the length of the well, such that (b ¢} = 27, W for the depth of the wells, with
k=1, m = 1/2. Then join smoothly m, half-wavelengths over the barrier with m,
half-waves across the well so that kb = m 7 and K¢ = m,m, with corresponding
free-electron energies given by £ = k% and W 4 E = K. This construction for
a given E corresponds to two identical eigenvalues (degenerate) and to two linearly
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independent solutions [5]. The corresponding depth of the well for ZEGs follows and

1S
v () - ()

with a threshold value b, when W =0

2rmy

T omy 4 my

(17)

In applying our general analysis to the Kr model we need the Fourier decompo-
sition

Viz) = Z [—%—V; sin (nTb)] cos(nz). (18)

So, according to our criterion (6), (5) and (8), the initial condition for the nth gap
to be vanishing is V, &~ 0, ic. sin(nb/2) = 0, or nb =~ m,2x. If we take

ny

b:bo-l-é by =2rm (19)

(i
we can compare (17) and (19) to see that » = m; + m,. Omitting details [21] we
can show that

W = k(m,,m,)é (20)

where k(m,, m,) is a coeflicient of order n? dependent on m, and m,. Then since
W « n, it follows that § < »n~!. From (16) and (19} we find that

3
Wzl(i+]—)6+o(5:’) @
TJ’?.I ey

which is in agreement with (20).

In summary, following the criterion that we have developed for ZEGs, we have
illustrated its value in several ways. The perturbation criterion is confirmed by ap-
plication to known models without ZEGs (Mathieu, Dirac, etc) and we proved the
absence of high-lying ZEGs for the triangular case. In addition to the examples pre-
sented here we have also studied a smooth potential introduced by Wille er al [22]
which has no zEGs, Lin and Smit’s alternating constant and triangular profile [5]
which may, another potential that may be describcd as a superposition of a kP po-
tential and negative Dirac combs which exhibits a ZEG below the bottom of Xp wells,
and have found the corresponding conditions for ZEGs in other gencralized Kp (sec-
tionally constant) superlattice models. Dctails of these calculations will be reported
later {21]. These various tests show that the conditions for the existence of vanishing
gaps have been established by our analysis. When the Fourier series of a periodic
potential exists (is well behaved)} these conditions involve special rclations between
those Fourier coefficients which have been obtained for high-lying gaps via a system-
matic perturbation approach that appears to yicld quite strong results. We have also
seen from our studies, supported by the discussion of the finite 3 x 3 approximation
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[21), that ZEGs can occur for smooth periodic poteniials, 1aying to rest the impression
that developed through carlier KP studies, and ephanced by Lin and Smit’s {5] study
of the triangular well with flat plateau. Clearly there s no need for a fiat plateaw, nor
for a discontinuity in Slope between interstitial region, nor for the top of the potential
to be flatter than the bottom, nor in fact for ZEGs to only appear above a plateau.
Also in a separate article [23] we will present a number of numerical dljvstrations that
may now be understood in the light of the present analysis. Some new progress can
perhaps also be made with the help of the present approach in higher dimensions
and it would be interesting to consider extensions for the single impurity problem.
The impact on classical problems also merits {urther study.
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Engincering Research Council of Canada through grant OPGQ005036 10 PDL, and
in part by a Visiting Fellowship from the University of Manitoba to AIM. We wish
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