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LETTER TO THE EDITOR 

Vanishing gaps in ID bandstructures 

A I Mogilner and P D Loly 
Deparlment of Physics and Winnipeg Instilute far Theoretical Physics, Univenily of 
hfanitoba, Winnipeg. Manitoba R3T 2N2, Canada 

Received 31 March 1992 

AbslrncL The cliterion for vanishing or nro-energy gaps in the spectrum of tD electronic 
bandstrucmres is obtaincd from pxlurbatian theory. I1 is in agreemen1 with examples 
of periodic potenlials which ncver exhibit zro-g;ips as well as with lhose which may, 
including certain smoolh periodic potmtiiils. ’llw results lhave relevance to recenl work in 
Ihe k l d  of semiconductor lsycred Ihcterosiruclum or superlallices. The analysis should 
also have implications for oilier problcnis ilia1 involve Hill’s determinant. 

Rigorous results for electronic energy bands exist mainly for ID 11-31 where the gen- 
eral results describe energy bands varying monotonically from minimum to maximum 
energy from the centre of the Brillouin zone to the boundary of the first Brillouin 
zone, or vice versa, with gaps separating successive bands, which a rc  infinite in num- 
ber. However, the occurrence of vanishing gaps, o r  zero-energy gaps (ZEG), revives 
from time to time [U] and has remained an open question. While these do not 
occur in some well known models, e.g. the Mathicu problem [9], the ‘Dirac comb’ 
Limit [lo] of the Kronig-Penney (KI’) modcl, nor apparently in the sawtooth (trian- 
gular wave) potential [ll], they do appcrrr in studies of rectangular KP models and 
a hybrid of triangular wclls separated by llat interstial regions [SI, amongst others, 
and so the question arises as to what are the necessary characteristics of periodic 
potentials for the appearance of vanishing (i.e. disappearance of) energy gaps. In 
recent years Some of these I D  models, especially wrious KP models [12], but also 
sawtooth (triangular periodic) models Cor 64op ing  1131, have been helpful in the top- 
ical context of semiconductor heterostructures and othcr superlattices [S, 141 where 
molecular beam epitaxy can be used to fabricate a good approximation to any desired 
potential profile. Of course, one does not expect the criteria for vanishing gaps in ID 
to be met precisely, in the same sense that certain exotic van Hove singularities are 
not fully realized, hu t  surely our results have rclcvance to anomalously small hand 
gaps. Our interest in these questions was stimulated by a systematic numerical study 
[ll] of simple periodic potentials and in this letter we present our recent analytic 
understanding of this question. 

There a re  a whole set of rigorous theorems 131 which give very restrictive con- 
ditions on the narrow classes of potentials having infinileb niafly ZEGs. It follows 
that in some rigorous sense alnimt all periodic potentials possess open gaps, and the 
existence of E G s  is the exceptional case, needing Some constraints on the model 
parameters. 
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Let us note that there may be connections with other quantum problems, e.g. the 
search for gaps in photonic band structures (151, the anharmonic oscillator (161, as 
well as many others that predate quantum mechanics and electronic energy bands, 
since the mathematical problem of periodic perturbations goes back to Hill’s equation 
in classical problems [17] where examples range from astronomical calculations to the 
inverse pendulum. 

We consider the ID operator (-A + V) where V ( z  + 2rrn) = V ( z ) ,  n is any 
integer number, and 2n is the lattice parameter. It is shown in 131 that the edges of 
the gaps in the spectrum of this operator may be obtained in the following way. 

H P = -d2/dz2  + V on L2([0,2rr] ,dz)  with periodic boundary conditions; and 

H a =  -dZ/dz2  + V on L2( [0 ,2rr ] ,d~)  with antiperiodic boundary conditions 

and also let 

Consider the operators 

Let E:, E;, .. be the eigenvalues of H, and E:, E;, . . ., correspondingly, of Ha,  

Then U ~ = l [ P , , a , ]  is the set of gaps. 
We have derived the criterion for the existence of ZEGS using the techniques of 

Malyshev and Minlos [18] for the Ease of the even gaps which appear at the centre 
of the Brillouin mne by restricting consideration to 11,. The procedure is similar for 
the odd gaps, which appear at the first Brillouin houndary, using instead Ha, and the 
derivation is the same. 

It is convenient to introduce the basis 4” = (?rr)-l”exp(inz). Then if $ solves 
H,+ = E$ and an = (&,,,$),we find - 

-m 

where Vm = (&”,,\/). This infinite detcrminant (Hill’s) for the eigenvalues has 
diagonal elements ( n 2  - E) bordered by parallels containing successively VI, V2,  . . . 
which are the Fourier coelficients of the potential [lY]. 

All even gaps vanish in the free-electron limit, since for V = 0 the eigenvalues 
of H ,  are n2, T Z  = 0, f l ,  f?, . . .. These arc doubly degenerate, associated with 
oppositely placed pairs of reciprocal lattice vectors ( f i x ) .  so that p, = a,+, , n = 
1 , 2 , .  . ., and this gives the cssence of the I D  problem. 

Tb consider the splitting of these doubly degenerate pairs for the 3~1th gap, 
n = 1 , 2 , .  . ., we use perturbation theory [20]. Details of the extensive remapping of 
the matrix will be given elsewhere [21]. If the cdges are given by 

= X f A (3) 

where X is the mean eigenvalue of the pair and A determines the splitting, it can be 
shown 1211 that 
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where V (lV(lr, = Iyl. Thus the only condition for the 2nth gap to vanish is 

A = O  (6) 

which thereby is our criterion for the existence of ZEGS. 
Our perturbation results are valid if the criterion for the smallness of the perturba- 

tion ((VI( < w (where ( ( V ( (  is the norm of ttie potential energy operator, ( (V( (  < V; 
w is the distance between the level considered and the set of all other p in t s  of 
the unperturbed spectrum, i.e. the encrgy difference to the next closest free-electron 
eigenvalues, such that w > 71 holds). So the results are true if the inequality 

V < n  (7) 

holds, meaning that strictly this applies to high-lying gaps only: the cnergy of the gap 
En ,.- n2 > n > V means that the energy of this gap is much higher than the top 
of the potential. Nevertheless we will see that in all known examples our predictions 
for the presence or absence of ZEGS are consistent with existing band gap knowledge. 

For the odd gaps we find a splitting A' Tor the ( 2 n  + 1)th gap, n = 0,1,. . . 

and the criterion for the ( 2 n  + 1)th gap, n = 0 . 1 , 2 , .  . . to vanish is A' = 0, where 
A' is defined by (8) under the same restriction (7) on the potential. 

Our criterion in (6), taken with (5 )  and (8). may be interpreted initially as V,, = 0, 
which has some application, or as V, sz 0 with corrections supplicd by the higher 
order terms, or in full, as will be seen in our cxamples below. 

Let us first discuss examples with no imi,vtiing gnps. It should be clear from above 
that our perturbation results concern high-lying gaps, and that some caution needs to 
be exercised in applying the results to low-lying gaps. In fact a greater generality is 
afforded by many of the results. 

For the pure cosine potential (the Mathieu problem) [9] the high-lying gaps (for 
which n > V, where V is the top of the potential) cannot vanish. Since there is 
only one non-zero Fourier coellicicnt, VI, the lirst non-zero term in the perturbation 
series for the nth gap is of ordcr n 

A E z -  v? > o  
(Zn)! (9) 

so that high-lying ZEGS are absent in accordance with the exact result [3]. 
For the Dirac comb described by V(z) = C~~?wAA6(z- 2rrn), A being the 

strength of the 6-function, the criterion 11 > V is not applicable but we may use 
perturbation theory formally if A << n to give 

A E - A + O ( A ' / n )  > O  (10) 

in accordance with the exact result [lo]. Again no gaps vanish. 
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Now let us consider the triangular periodic or sawtooth potential which has the 
Fourier series 

Clearly V,, = 0 for any n and all non-zcro terms have the same sign. An accurate 
estimate of the second order terms gives 

U2 
n3 

= c- > 0 (12) 
1 

nr2(?7a - m)*(n? - na2) 
A E - (  

“,#odd 

where C - 1, which means that high-lying even gaps are all open. For the odd gaps 
one finds 

A E = \ / ? , + , + O  (fi’) -j - -  ‘nu; +o($)  > o .  

, Now we discuss examples which do euhdm iiani,vhing gaps. Almost all reports of 
ZEGS are concerned with KP models [4, 5, 71 which are piecewise flat, except for 
Lin and Smit’s study [5 ]  of triangular wells separated by flat sections. One develops 
the impression that in some way flat sections are associated with this phenomenon. 
?his may be dispelled by considering the truncated 3 x 3 matrix from (2) for the 
lowest three eigenvalues corresponding to reciprocal lattice vectors for n = 0 , f l  
and finding its eigenvalues. This is a finite model for the following smooth potential 

V(E)=VlCOS(Z)+V~COS(72) V , , V , < l .  (14) 

For small VI, V, thc degeneracy condition for the first even gap (the 2nth gap for 
n = 1) occurs for 

v, = -v; + O( V?). (15) 

For example, if V2 = -0.25 we find that V, = 0.559 017 . .  . from this approxi- 
mation. A more precise value may be found numerically using larger dcterminants 
with the method described earlier 1191. In any vase this is exactly the perturbation 
criterion of second order perturbation theory for the first even ZEG from (5) if we 
omit other terms of higher order. Wc note that Strandberg [6] has also realized that 
ZEGs can occur for smooth potentials in a discussion for deep wells i i n g  arguments 
from inverse scattering theory. However he does not give a criterion comparable with 

For the Kronig-Penney modcl a simplc ‘gcometrical’ interpretation of some ZEGs 
was given by Lin and Smit [SI as follows: take b lor the length of the plateau, c for 
the length of the  well, such that ( b  + c )  = ?a, \I/ for the depth of the wells, with 
h = 1, m = 1/2. Then join smoothly f i i ,  half-wdvclcngths over the barrier with m, 
half-waves acros  the well so that kb = n i l r  and lic = m2r, with corresponding 
free-electron energies given by E = k’ and W + E = I<?. This construction for 
a given E corresponds to two identical eigenvalues (degenerate) and to two linearly 

our (5), (6). 

’ \  
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independent solutions [SI. The corresponding depth of the well for ZEGS follows and 
is 

2 r - b  

with a threshold value bo when M’ = 0 

In applying our  general analysis to the KI’ modcl we need the Fourier decompo- 
sition 

V(z)  = w .  ($)I cos(11z) 

n 

So, according to our criterion (6), (5) and (8), the initial condition for the nth gap 
to he vanishing is V,, % 0, i.e. sitt(izb/2) % 0, or n b %  mlZr. If we take 

(19) 
111, 

bo = 2 ~ -  b = bo + 6 
11 

we can compare (17) and (19) to see that I L  = ,ul + m?. Omitting details [ZI] we 
can show that 

w = k ( m , , m ? ) 6  (20) 

where k(m,,m,) is a coefficient of order i i z  dependent on nil and ni2. Then since 
W < n, it follows that 6 << n-l. From (16) and (19) we find that 

which is in agreement with (20). 
In summary, following the criterion that we have developed for ZEGS, we have 

illustrated its value in several ways. The  perturbation criterion is confirmed by ap- 
plication to known models without ZEGS (Mathieu, Dirac, etc) and we proved the 
absence of high-lying EGS for the triangular case. In addition to the examples pre- 
sented here we have also studied a smooth ‘potential introduced by Wille er ai (221 
which has no ZEGS, Lin and Smit’s alternating constant and triangular profile [SI 
which may, another potential that may he describcd as a superposition of a KP po- 
tential and negative Dirac combs which exhibits a ZEG below the bottom of KP wells, 
and have found the corresponding conditions lor ZEGS in other generalized KP (sec- 
tionally constant) superlattice models. Dctails of these calculations will be reported 
later [21]. These various tests show that the conditions for the existence of vanishing 
gaps have been established by our analysis. Whcn the Fourier series of a periodic 
potential exists (is well behaved) these conditions involve special relations between 
those Fourier coelficients which havc bcen obtained for high-lying gaps via a system- 
matic perturbation approach that appcars to yield quite strong results. We have also 
seen from our studies, supported by the discussion of the finite 3 x 3 approximation 
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(211, that ZEOs can occur for smoolh periodic porenriols, laying to rest the impression 
that developed through earkr w studies, and enhanced by Lin and Smit's 151 study 
of the triangular well with Bat plateau. Clearly there is no need for a flat plateau, nor 
for a discontinuity in slope between interstitial region, nor for the top of che potential 
to be flatter than the bottom, nor in fact lor ZEGs to only appear above a plateau. 
Also in a separate article 1231 we will present a number of numerical illustrations that 
may now be understood in the light of t h e  present analysis. Some new progress can 
perhaps also be made with the help OS the present approach in higher dimensions 
and it would be interesting to consider extensions for the single impurity . .~ problem. 
The impact on classical problems also merits further study. 

This work was supported in parc by a research grant from the Natural Sciences and 
Engineering Research Council of Canada through grant OPG0005036 io PDL, and 
in part by a Visiting Fellowship from the University of Manitoba to AIM. We wish 
to thank Sir james iighrniii for a usefui discussion. One oE us (AMj is grateiui to 
B S Bhakar, R Froese and L Rosen for useful conversations. 
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